if 1% further, runaway glaciation about 2 billion yrs ago (some think this avoidable)

RIGHT UNIVERSE

Basic physical forces	& approx relative strengths:
Strong nuclear	1
Electro-magnetic	10 ^{°2} (1/100)
Weak nuclear	10 ⁵ (1/100,000)
Gravity	10 ³⁰ (1/"1 with 39 zeroes")

Balance of gravity and cosmic expansion to 1 part in 10⁶⁰ to have universe last so long

Strength of strong nuclear force

- important in formation & stability of elements above helium
 - if 50% weaker, not even iron & carbon stable 5% weaker, deuterium unstable, stars wouldn't work
 - 5% stronger, diproton stable, stars explode
- Strength of weak nuclear force
 - important in causing dispersion of heavy elements from star in supernova explosion
 - if much weaker, neutrinos pass thru outer shell of star without exploding it to release elements
 - if much stronger, neutrinos remain trapped in core of star, no explosion
- Balance of positive and negative charges to cancel out electro-magnetic force so gravity dominates on astronomical scale of sizes must balance to better than 1 part in 10³⁷
 - protons form much earlier in history of universe than electrons; why same number?

ATTEMPTS TO AVOID DESIGNER

As seen above, universe looks very designed; as this has become apparent, some strenuous attempts to avoid

Weak Anthropic Principle - Brandon Carter if these not balanced, we wouldn't be here just accident of observation: no observers if not right

but trivial, not explanation: if my parents hadn't met...